你如果要对自己刚刚搭建好的redis做一个基准的压测,测一下你的redis的性能和QPS(query per second)
redis自己提供的redis-benchmark压测工具,是最快捷最方便的,当然啦,这个工具比较简单,用一些简单的操作和场景去压测
1、对redis读写分离架构进行压测,单实例写QPS+单实例读QPS
redis-3.2.8/src
./redis-benchmark -h 192.168.31.187
- c <clients> Number of parallel connections (default 50) -n <requests> Total number of requests (default 100000) -d <size> Data size of SET/GET value in bytes (default 2)
根据你自己的高峰期的访问量,在高峰期,瞬时最大用户量会达到10万+,-c 100000,-n 10000000,-d 50
各种基准测试,直接出来
1核1G,虚拟机
====== PING_INLINE ====== 100000 requests completed in 1.28 seconds 50 parallel clients 3 bytes payload keep alive: 1
99.78% <= 1 milliseconds 99.93% <= 2 milliseconds 99.97% <= 3 milliseconds 100.00% <= 3 milliseconds 78308.54 requests per second
====== PING_BULK ====== 100000 requests completed in 1.30 seconds 50 parallel clients 3 bytes payload keep alive: 1
99.87% <= 1 milliseconds 100.00% <= 1 milliseconds 76804.91 requests per second
====== SET ====== 100000 requests completed in 2.50 seconds 50 parallel clients 3 bytes payload keep alive: 1
5.95% <= 1 milliseconds 99.63% <= 2 milliseconds 99.93% <= 3 milliseconds 99.99% <= 4 milliseconds 100.00% <= 4 milliseconds 40032.03 requests per second
====== GET ====== 100000 requests completed in 1.30 seconds 50 parallel clients 3 bytes payload keep alive: 1
99.73% <= 1 milliseconds 100.00% <= 2 milliseconds 100.00% <= 2 milliseconds 76628.35 requests per second
====== INCR ====== 100000 requests completed in 1.90 seconds 50 parallel clients 3 bytes payload keep alive: 1
80.92% <= 1 milliseconds 99.81% <= 2 milliseconds 99.95% <= 3 milliseconds 99.96% <= 4 milliseconds 99.97% <= 5 milliseconds 100.00% <= 6 milliseconds 52548.61 requests per second
====== LPUSH ====== 100000 requests completed in 2.58 seconds 50 parallel clients 3 bytes payload keep alive: 1
3.76% <= 1 milliseconds 99.61% <= 2 milliseconds 99.93% <= 3 milliseconds 100.00% <= 3 milliseconds 38684.72 requests per second
====== RPUSH ====== 100000 requests completed in 2.47 seconds 50 parallel clients 3 bytes payload keep alive: 1
6.87% <= 1 milliseconds 99.69% <= 2 milliseconds 99.87% <= 3 milliseconds 99.99% <= 4 milliseconds 100.00% <= 4 milliseconds 40469.45 requests per second
====== LPOP ====== 100000 requests completed in 2.26 seconds 50 parallel clients 3 bytes payload keep alive: 1
28.39% <= 1 milliseconds 99.83% <= 2 milliseconds 100.00% <= 2 milliseconds 44306.60 requests per second
====== RPOP ====== 100000 requests completed in 2.18 seconds 50 parallel clients 3 bytes payload keep alive: 1
36.08% <= 1 milliseconds 99.75% <= 2 milliseconds 100.00% <= 2 milliseconds 45871.56 requests per second
====== SADD ====== 100000 requests completed in 1.23 seconds 50 parallel clients 3 bytes payload keep alive: 1
99.94% <= 1 milliseconds 100.00% <= 2 milliseconds 100.00% <= 2 milliseconds 81168.83 requests per second
====== SPOP ====== 100000 requests completed in 1.28 seconds 50 parallel clients 3 bytes payload keep alive: 1
99.80% <= 1 milliseconds 99.96% <= 2 milliseconds 99.96% <= 3 milliseconds 99.97% <= 5 milliseconds 100.00% <= 5 milliseconds 78369.91 requests per second
====== LPUSH (needed to benchmark LRANGE) ====== 100000 requests completed in 2.47 seconds 50 parallel clients 3 bytes payload keep alive: 1
15.29% <= 1 milliseconds 99.64% <= 2 milliseconds 99.94% <= 3 milliseconds 100.00% <= 3 milliseconds 40420.37 requests per second
====== LRANGE_100 (first 100 elements) ====== 100000 requests completed in 3.69 seconds 50 parallel clients 3 bytes payload keep alive: 1
30.86% <= 1 milliseconds 96.99% <= 2 milliseconds 99.94% <= 3 milliseconds 99.99% <= 4 milliseconds 100.00% <= 4 milliseconds 27085.59 requests per second
====== LRANGE_300 (first 300 elements) ====== 100000 requests completed in 10.22 seconds 50 parallel clients 3 bytes payload keep alive: 1
0.03% <= 1 milliseconds 5.90% <= 2 milliseconds 90.68% <= 3 milliseconds 95.46% <= 4 milliseconds 97.67% <= 5 milliseconds 99.12% <= 6 milliseconds 99.98% <= 7 milliseconds 100.00% <= 7 milliseconds 9784.74 requests per second
====== LRANGE_500 (first 450 elements) ====== 100000 requests completed in 14.71 seconds 50 parallel clients 3 bytes payload keep alive: 1
0.00% <= 1 milliseconds 0.07% <= 2 milliseconds 1.59% <= 3 milliseconds 89.26% <= 4 milliseconds 97.90% <= 5 milliseconds 99.24% <= 6 milliseconds 99.73% <= 7 milliseconds 99.89% <= 8 milliseconds 99.96% <= 9 milliseconds 99.99% <= 10 milliseconds 100.00% <= 10 milliseconds 6799.48 requests per second
====== LRANGE_600 (first 600 elements) ====== 100000 requests completed in 18.56 seconds 50 parallel clients 3 bytes payload keep alive: 1
0.00% <= 2 milliseconds 0.23% <= 3 milliseconds 1.75% <= 4 milliseconds 91.17% <= 5 milliseconds 98.16% <= 6 milliseconds 99.04% <= 7 milliseconds 99.83% <= 8 milliseconds 99.95% <= 9 milliseconds 99.98% <= 10 milliseconds 100.00% <= 10 milliseconds 5387.35 requests per second
====== MSET (10 keys) ====== 100000 requests completed in 4.02 seconds 50 parallel clients 3 bytes payload keep alive: 1
0.01% <= 1 milliseconds 53.22% <= 2 milliseconds 99.12% <= 3 milliseconds 99.55% <= 4 milliseconds 99.70% <= 5 milliseconds 99.90% <= 6 milliseconds 99.95% <= 7 milliseconds 100.00% <= 8 milliseconds 24869.44 requests per second
我们这个读写分离这一块的第一讲
大部分情况下来说,看你的服务器的机器性能和配置,机器越牛逼,配置越高
单机上十几万,单机上二十万
很多公司里,给一些低配置的服务器,操作复杂度
大公司里,都是公司会提供统一的云平台,比如京东、腾讯、BAT、其他的一些、小米、美团
虚拟机,低配
搭建一些集群,专门为某个项目,搭建的专用集群,4核4G内存,比较复杂的操作,数据比较大
几万,单机做到,差不多了
redis提供的高并发,至少到上万,没问题
几万~十几万/二十万不等
QPS,自己不同公司,不同服务器,自己去测试,跟生产环境还有区别
生产环境,大量的网络请求的调用,网络本身就有开销,你的redis的吞吐量就不一定那么高了
QPS的两个杀手:一个是复杂操作,lrange,挺多的; value很大,2 byte,我之前用redis做大规模的缓存
做商品详情页的cache,可能是需要把大串数据,拼接在一起,作为一个json串,大小可能都几k,几个byte
2、水平扩容redis读节点,提升度吞吐量
就按照上一节课讲解的,再在其他服务器上搭建redis从节点,单个从节点读请QPS在5万左右,两个redis从节点,所有的读请求打到两台机器上去,承载整个集群读QPS在10万+